Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499127

RESUMO

Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1ß), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.


Assuntos
Basidiomycota , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Colo , Camundongos Endogâmicos C57BL
2.
Int J Biol Macromol ; 258(Pt 1): 128702, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072341

RESUMO

Phellinus linteus polysaccharides exhibit antitumor, immunomodulatory, anti-inflammatory, and antioxidant properties, mitigate insulin resistance, and enhance the diversity and abundance of gut microbiota. However, the bioactivities of P. linteus polysaccharides vary owing to the complex structure, thereby, limiting their application. Various processing strategies have been employed to modify them for improving the functional properties and yield. Herein, we compare the primary modes of extraction and purification employed to improve the yield and purity, review the structure-activity relationships, and discuss the application of P. linteus polysaccharides using nano-carriers for the encapsulation and delivery of various drugs to improve bioactivity. The limitations and future perspectives are also discussed. Exploring the bioactivity, structure-activity relationship, processing methods, and delivery routes of P. linteus polysaccharides will facilitate the development of functional foods and dietary supplements rich in P. linteus polysaccharides.


Assuntos
Basidiomycota , Basidiomycota/química , Polissacarídeos/química , Relação Estrutura-Atividade , Sistemas de Liberação de Medicamentos
3.
Front Bioeng Biotechnol ; 11: 1188176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284238

RESUMO

Introduction: Bacterial wilt (BW) caused by the aerobic, Gram-negative pathogenic species Ralstonia solanacearum (RS) is a major disease impacting commercial agriculture worldwide. Asian phylotype I of RS is the cause of tomato bacterial wilt, which has caused severe economic losses in southern China for many years. An urgent priority in control of bacterial wilt is development of rapid, sensitive, effective methods for detection of RS. Methods: We describe here a novel RS detection assay based on combination of loop-mediated isothermal amplification (LAMP) and CRISPR/Cas12a. crRNA1, with high trans-cleavage activity targeting hrpB gene, was selected out of four candidate crRNAs. Two visual detection techniques, involving naked-eye observation of fluorescence and lateral flow strips, were tested and displayed high sensitivity and strong specificity. Results and Discussion: The LAMP/Cas12a assay accurately detected RS phylotype Ⅰ in 14 test strains, and showed low detection limit (2.0 × 100 copies). RS in tomato stem tissue and soil samples from two field sites with suspected BW infection was identified accurately, suggesting potential application of LAMP/Cas12a assay as point-of-care test (POCT). The overall detection process took less than 2 h and did not require professional lab equipment. Our findings, taken together, indicate that LAMP/Cas12a assay can be developed as an effective, inexpensive technique for field detection and monitoring of RS.

4.
Int J Biol Macromol ; 243: 125199, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285888

RESUMO

Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improved the physicochemical characteristics and utilization of G. lucidum polysaccharides, and made them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.


Assuntos
Ganoderma , Reishi , Reishi/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Relação Estrutura-Atividade , Fenômenos Químicos , Suplementos Nutricionais , Ganoderma/química
5.
Mol Nutr Food Res ; 67(11): e2200340, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988616

RESUMO

SCOPE: Changes in composition of intestinal microbes may disrupt the balance of their interaction with a susceptible host, resulting in development of inflammatory bowel disease (IBD). METHODS AND RESULTS: The study applied in combination two Lactobacillus strains (L. rhamnosus BY-02, L. plantarum BY-05) ("LS treatment"), previously isolates from feces of healthy human infants, in a mouse model of dextran sodium sulfate (DSS)-induced colitis, and evaluates their ameliorative effect and its possible mechanism. LS treatment suppresses weight loss and colon shortening, and reduces disease activity index in the mice. It also has several additional beneficial effects: i) maintains goblet cell numbers and ameliorates intestinal barrier damage in colonic tissue; ii) alters intestinal microbial composition close to normal by increasing abundances of Muribaculaceae, Akkermansia, Clostridia, Oscillospiraceae, and Lachnospiraceae, and decreasing abundance of Escherichia-Shigella; iii) increases content of short-chain fatty acids; iv) reduces content of pro-inflammatory lipopolysaccharides; v) suppresses overactivation of TLR4/NF-κB inflammatory signaling pathway. CONCLUSION: Combination treatment with two Lactobacillus strains strongly ameliorates colitis symptoms in the mouse model by favorably altering intestinal microbial composition and suppressing inflammatory response.


Assuntos
Colite , Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Humanos , Camundongos , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Intestinos , Colo/metabolismo , Lactobacillus , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Lactobacillus plantarum/metabolismo
6.
Microbiol Spectr ; : e0437022, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975838

RESUMO

Effects of Clostridium butyricum and chitooligosaccharides (COS), singly and in synbiotic combination, were evaluated in a C57BL/6 mouse model of dextran sulfate (DSS)-induced acute ulcerative colitis (UC). Treatment with C. butyricum and/or COS ameliorated UC symptoms in vivo, and the strongest effects were observed for the combination in terms of reduced mortality rates and disease activity indices, increased body weight and colon length, and improved histological features. The C. butyricum and COS combination achieved the following: (i) regulated levels of inflammation-related cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1ß [IL-1ß], IL-6, IL-10) and had a stronger anti-inflammatory effect than either component alone, based on inhibition of Toll-like receptor 4 (TLR-4)/NF-κB/MAPK signaling pathway activation; (ii) enhanced intestinal barrier function by restoring levels of tight junction proteins (occludin, claudin-1, ZO-1) and MUC2; (iii) increased abundance and diversity of beneficial bacteria (gut microbiota) and reduced levels of pathogenic bacteria; and (iv) enhanced production of short-chain fatty acids. Our findings indicate that the synbiotic C. butyricum and COS combination has strong potential as a therapeutic adjuvant for UC. IMPORTANCE Ulcerative colitis (UC), an idiopathic intestinal disease characterized by continuous remission/relapse inflammatory cycles in the colonic mucosal layer, has strong adverse effects on patients' quality of life and considerable costs for health care systems. Probiotics, prebiotics, and synbiotics are regarded as potential therapeutic agents for UC, in terms of safety and efficacy. In this study, we present detailed evaluation of effects in a DSS-induced UC mouse model of a synbiotic composed of Clostridium butyricum and COS (molecular weight [MW], 2,500 Da). We found that synergistic (synbiotic) action of the C. butyricum and COS combination is more effective than either factor alone for prevention and/or therapy of UC by regulating gut microbiota and intestinal barrier function. Our findings indicate that C. butyricum and COS in combination has strong potential for development as anti-UC therapeutic drugs or adjuvant agents in pharmaceutical, food, and livestock industries. Highlights include the following. (i) The C. butyricum and COS combination ameliorated clinical UC symptoms and improved colonic morphology. (ii) The C. butyricum and COS combination displayed strong anti-inflammatory and antioxidant effects. (iii) The C. butyricum and COS combination enhanced expression of tight junction proteins. (iv) The C. butyricum and COS combination inhibited the TRL-4/NF-κB/MAPK signaling pathway. (v) The C. butyricum and COS combination modulated gut microbiota abundance and composition.

7.
Environ Sci Pollut Res Int ; 30(12): 33181-33194, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474037

RESUMO

In this study, two NH4+-N and S2- removal strains, namely, Kosakonia oryzae (FB2-3) and Acinetobacter baumannii (L5-4), were isolated from the packing materials in a long-running biotrickling filter (BTF). The removal capacities of combined FB2-3 and L5-4 (FB2-3 + L5-4) toward 100 mg L-1 of NH4+-N and 200 mg L-1 of S2- reached 97.31 ± 1.62% and 98.57 ± 1.12% under the optimal conditions (32.0 °C and initial pH = 7.0), which were higher than those of single strain. Then, FB2-3 and L5-4 liquid inoculums were prepared, and their concentrations respectively reached 1.56 × 109 CFU mL-1 and 1.05 × 109 CFU mL-1 by adding different resuspension solutions and protective agents after 12-week storage at 25 °C. Finally, pilot-scale BTF test showed that NH3 and H2S in the real exhaust gases from a pharmaceutical factory were effectively removed with removal rates > 87% and maximum elimination capacities were reached 136 g (NH3) m-3 h-1 and 176 g (H2S) m-3 h-1 at 18 °C-34 °C and pH 4.0-7.0 in the BTF loaded with bamboo charcoal packing materials co-immobilized with FB2-3 and L5-4. After co-immobilization of FB2-3 and L5-4, in the bamboo charcoal packing materials, the new microbial diversity composition contained the dominant genera of Acinetobacter, Mycobacterium, Kosakonia, and Sulfobacillus was formed, and the diversity of entire bacterial community was decreased, compared to the control. These results indicate that FB2-3 and L5-4 have potential to be developed into liquid ready-to-use inoculums for effectively removing NH3 and H2S from exhaust gases in BTF.


Assuntos
Acinetobacter baumannii , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Filtração/métodos , Carvão Vegetal , Reatores Biológicos , Gases , Emissões de Veículos , Biodegradação Ambiental
8.
Int. microbiol ; 25(3): 457-469, Ago. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216206

RESUMO

Tangxun Lake is the largest urban lake in China, which is polluted by multiple wastewaters, and now is severely eutrophic. We detected diversity, abundance, and the coexistence of Candidatus Methylomirabilis oxyfera-like and anammox bacteria in different horizontal and vertical directions of the lake sediments through qPCR and clone library. Phylogenetic tree analysis showed that the Ca. Methylomirabilis oxyfera-like and anammox bacteria exhibited high diversity, and they belonged to group B—E and Ca. Brocadia genus, respectively. These two bacteria displayed higher diversity in polluted area than in other areas. Furthermore, they had great spatial variation of abundance both horizontally and vertically. The abundance of anammox bacteria was significantly higher than that of Ca. Methylomirabilis oxyfera-like bacteria. The stronger the human interference were, the higher abundances these two bacteria exhibited horizontally, whereas both their abundances and the ratio of anammox to Ca. Methylomirabilis oxyfera-like bacteria decreased with the increasing depth. Redundancy analysis indicated that nitrate was the most influential environmental factor to the abundance of these two bacteria. Ammonia, nitrite, total nitrogen, and organic matters were in positive correlation with the abundance of these two bacteria. Nitrate was slightly negatively correlated with the abundance of Ca. Methylomirabilis oxyfera-like bacteria, while it was positively correlated with that of anammox bacteria. Our results provided an insight into the effects of environmental factors such as ammonia, nitrite, and nitrate on the diversity and abundances of these two bacteria and theoretical basis for restoration of water.(AU)


Assuntos
Humanos , Águas Residuárias/microbiologia , Microbiologia da Água , Bactérias , Nitratos , Sedimentos , Microbiologia , China
9.
Artigo em Inglês | MEDLINE | ID: mdl-35442876

RESUMO

A Gram-stain-negative, facultative anaerobic, non-motile, rod-shaped strain was isolated from saline-alkali soil collected in PR China, and it was designated as strain FJxsT. Its optimal growth was observed at 37-40 °C in the presence of 0-3 % (w/v) NaCl (pH 7.0). The major fatty acids of strain FJxsT were iso-C15 : 0, iso-C17 : 0 3OH, summed feature 3, C16 : 0 and iso-C15 : 1 G. The predominant respiratory quinone was menaquinone 6. The DNA G+C content of the strain was 45.18 mol%. Whole genome and 16S rRNA gene sequence analyses indicated that strain FJxsT exhibited 94.78 % sequence identity (the maximum) with Sinomicrobium soli N-1-3-6T, 94.36 % with Sinomicrobium pectinilyticum 5DNS001T, and 93.52 % with Sinomicrobium oceani SCSIO 03483T. Analyses of genotypic, phenotypic, phylogenetic and chemotaxonomic characteristics indicated that strain FJxsT represented a novel species of the genus Sinomicrobium. This novel species was named Sinomicrobium weinanense sp. nov. with its type strain as FJxsT (=CCTCC AB 2019251T=KCTC 72740T).


Assuntos
Álcalis , Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
10.
Int Microbiol ; 25(3): 457-469, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35094192

RESUMO

Tangxun Lake is the largest urban lake in China, which is polluted by multiple wastewaters, and now is severely eutrophic. We detected diversity, abundance, and the coexistence of Candidatus Methylomirabilis oxyfera-like and anammox bacteria in different horizontal and vertical directions of the lake sediments through qPCR and clone library. Phylogenetic tree analysis showed that the Ca. Methylomirabilis oxyfera-like and anammox bacteria exhibited high diversity, and they belonged to group B-E and Ca. Brocadia genus, respectively. These two bacteria displayed higher diversity in polluted area than in other areas. Furthermore, they had great spatial variation of abundance both horizontally and vertically. The abundance of anammox bacteria was significantly higher than that of Ca. Methylomirabilis oxyfera-like bacteria. The stronger the human interference were, the higher abundances these two bacteria exhibited horizontally, whereas both their abundances and the ratio of anammox to Ca. Methylomirabilis oxyfera-like bacteria decreased with the increasing depth. Redundancy analysis indicated that nitrate was the most influential environmental factor to the abundance of these two bacteria. Ammonia, nitrite, total nitrogen, and organic matters were in positive correlation with the abundance of these two bacteria. Nitrate was slightly negatively correlated with the abundance of Ca. Methylomirabilis oxyfera-like bacteria, while it was positively correlated with that of anammox bacteria. Our results provided an insight into the effects of environmental factors such as ammonia, nitrite, and nitrate on the diversity and abundances of these two bacteria and theoretical basis for restoration of water.


Assuntos
Lagos , Nitritos , Amônia , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/genética , Humanos , Metano , Nitratos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
11.
Int J Biol Macromol ; 202: 375-387, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35063480

RESUMO

Chitin derivatives (CDs), including chitosan (CS), chitooligosaccharides (COS), and glucosamine (GlcN), were administrated in dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice. UC symptoms such as body weight loss, reduced food intake, and increased disease activity index were relieved (except GlcNL group). CDs (except GlcNL) exerted a strong protective effect on colon length and colonic structure. Treatment with CDs (except GlcNL) increased IL-10 level, reduced levels of IL-1ß, IL-6, TNF-α, myeloperoxidase, and inducible nitric oxide synthase, and enhanced expression of tight junction proteins significantly. CDs (except GlcNL) significantly upregulated IκB-α level, and downregulated p65 and p38 phosphory lation and TLR-4 mRNA transcription level, indicating inhibition of TRL-4/NF-κB/MAPK signaling pathway activity. CD treatments increased relative abundance of gut microbiota, modulated its composition, and increased the concentrations of SCFAs. Our findings indicate that CDs exert an ameliorative effect on UC by change of gut microbiota composition and restoration of intestinal barrier function.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Anti-Inflamatórios/farmacologia , Quitina/metabolismo , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo
12.
Chemosphere ; 287(Pt 3): 132288, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555581

RESUMO

Biodegradable chelant (S,S)-N,N'-ethylenediaminedisuccinic acid (EDDS) has the more advantages of enhanced metal mobility, rapid degradation, environmental friendliness, and ammonium release. However, the risk of metal and/or nitrate residues and leaching within EDDS biodegradation remains as the bottleneck for the widespread application of EDDS-induced phytoremediation. This study aims to explore if the inoculation of plant growth-promoting rhizobacteria (PGPRs) can eliminate the risk associated with the short-term application of EDDS by investigating Cu phytoextraction and soil nitrate content. Results showed that EDDS application significantly increased the copper (Cu) concentration in shoots, soil total Cu, NH4+-N and NO3--N content, but decreased plant biomass. The inoculation of PGPRs in the soil showed a strong ability to increase plant biomass, Cu phytoextraction and soil NH4+-N content, and decrease soil Cu and NO3--N content. Moreover, bacterial dominant taxa were found to be the largest contributors to soil NH4+-N and NO3--N variation, and the abundance of denitrifying bacteria (Bacteroidetes and Stenotrophomonas) decreased in the treatment with PGPRs. The risk of residual Cu and nitrate leaching was reduced by the inoculation of PGPRs without significantly changing the stability of the bacterial community. These new findings indicate that the exogenous application of beneficial rhizobacteria can provide an effective strategy to reduce the risk in metal-contaminated soils of chelant-assisted phytoextraction.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Quelantes , Cobre/análise , Etilenodiaminas , Nitratos , Solo , Poluentes do Solo/análise , Succinatos
13.
Microorganisms ; 9(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576848

RESUMO

Liquid-state fermentation (LSF) and solid-state fermentation (SSF) are two forms of industrial production of lactic acid bacteria (LAB). The choice of two fermentations for LAB production has drawn wide concern. In this study, the tolerance of bacteria produced by the two fermentation methods to acid stress was compared, and the reasons for the tolerance differences were analyzed at the physiological and transcriptional levels. The survival rate of the bacterial agent obtained from solid-state fermentation was significantly higher than that of bacteria obtained from liquid-state fermentation after spray drying and cold air drying. However, the tolerance of bacterial cells obtained from liquid-state fermentation to acid stress was significantly higher than that from solid-state fermentation. The analysis at physiological level indicated that under acid stress, cells from liquid-state fermentation displayed a more solid and complete membrane structure, higher cell membrane saturated fatty acid, more stable intracellular pH, and more stable activity of ATPase and glutathione reductase, compared with cells from solid-state fermentation, and these physiological differences led to better tolerance to acid stress. In addition, transcriptomic analysis showed that in the cells cultured from liquid-state fermentation, the genes related to glycolysis, inositol phosphate metabolism, and carbohydrate transport were down-regulated, whereas the genes related to fatty acid synthesis and glutamate metabolism were upregulated, compared with those in cells from solid-state fermentation. In addition, some genes related to acid stress response such as cspA, rimP, rbfA, mazF, and nagB were up-regulated. These findings provide a new perspective for the study of acid stress tolerance of L. paracasei Zhang and offer a reference for the selection of fermentation methods of LAB production.

14.
Microbiol Res ; 250: 126804, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34144508

RESUMO

Pseudomonas fluorescens ATCC13525 is an important growth-promoting rhizobacteria (PGPR) and plant disease biocontrol bacterium. However, due to poor stress resistance, it is prone to be inactivated by preparation, drying and storage. In this study, we investigated the effects of different stress preadaptation methods (2.0∼3.0 wt% NaCl, 0.01∼0.20 wt% H2O2, and 35∼44 °C) and two stress adaptation genes (rpoS, and hfq) on the stress resistance of P. fluorescens ATCC13525 (PF-WT). After stress preadaptation with low stress of 3.0 wt% NaCl, 0.05 wt% H2O2, and 41 °C for 30 min, the tolerance of PF-WT toward high lethal stress environments (20.0 wt% NaCl, 1.00 wt% H2O2, and 47 °C) were significantly improved. Moreover, knockout of rpoS and hfq genes resulted in slower culture growth than PF-WT under the sublethal stress culture conditions (5.0 wt% NaCl, 0.08 wt% H2O2, and 35 °C), whereas rpoS and hfq overexpressed strains (PF-pBBR2-rpoS and PF-pBBR2-hfq) obviously grew better than the control strain PF-pBBR2. Further, we prepared biocontrol agents (BACs) of different strains after different stress preadaptation treatments. Compared to PF-WT without stress preadaptation, preadaptation by 0.05 wt% H2O2 for 30 min resulted in 5.65 times higher survival rate, while treatment with 3.0 wt% NaCl for 30 min of PF-pBBR2-rpoS led to 5.60 times higher survival rate. This finding provides the simple and effective protection methods for P. fluorescens ATCC13525 BACs preparation by stress preadaptation and overexpression of stress adaptation genes.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Fator Proteico 1 do Hospedeiro/genética , Pseudomonas fluorescens/genética , Fator sigma/genética , Estresse Fisiológico/genética , Agentes de Controle Biológico/metabolismo , Peróxido de Hidrogênio
15.
J Microbiol Biotechnol ; 31(6): 855-866, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33879638

RESUMO

The effects of various carbon sources on mycelial growth and polysaccharide synthesis of the medicinal fungus Inonotus obliquus in liquid fermentation were investigated. After 12-d fermentation, mycelial biomass, polysaccharide yield, and polysaccharide content were significantly higher in Glc+Lac group (glucose and lactose used as combined carbon source) than in other groups. Crude polysaccharides (CIOPs) and the derivative neutral polysaccharides (NIOPs) were obtained from mycelia fermented using Glc, fructose (Fru), Lac, or Glc+Lac as carbon source. Molecular weights of four NIOPs (termed as NIOPG, NIOPF, NIOPL, and NIOPGL) were respectively 780.90, 1105.00, 25.32, and 10.28 kDa. Monosaccharide composition analyses revealed that NIOPs were composed of Glc, Man, and Gal at different molar ratios. The NIOPs were classified as α-type heteropolysaccharides with 1→2, 1→3, 1→4, 1→6 linkages in differing proportions. In in vitro cell proliferation assays, viability of RAW264.7 macrophages was more strongly enhanced by NIOPL or NIOPGL than by NIOPG or NIOPF, and proliferation of HeLa or S180 tumor cells was more strongly inhibited by NIOPG or NIOPGL than by NIOPF or NIOPL, indicating that immune-enhancing and anti-tumor activities of NIOPs were substantially affected by carbon source. qRT-PCR analysis revealed that expression levels of phosphoglucose isomerase (PGI) and UDP-Glc 4-epimerase (UGE), two key genes involved in polysaccharide synthesis, varied depending on carbon source. Our findings, taken together, clearly demonstrate that carbon source plays an essential role in determining structure and activities of I. obliquus polysaccharides by regulating expression of key genes in polysaccharide biosynthetic pathway.


Assuntos
Carbono/metabolismo , Polissacarídeos Fúngicos/biossíntese , Polissacarídeos Fúngicos/química , Inonotus/metabolismo , Animais , Biomassa , Vias Biossintéticas/genética , Carbono/química , Fermentação , Polissacarídeos Fúngicos/farmacologia , Proteínas Fúngicas/genética , Células HeLa , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Micélio/metabolismo , Células RAW 264.7
16.
Front Microbiol ; 12: 781831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095795

RESUMO

Some studies have reported the importance of rhizobium in mitigating heavy metal toxicity, however, the regulatory mechanism of the alfalfa-rhizobium symbiosis to resist copper (Cu) stress in the plant-soil system through biochemical reactions is still unclear. This study assessed the effects of rhizobium (Sinorhizobium meliloti CCNWSX0020) inoculation on the growth of alfalfa and soil microbial characteristics under Cu-stress. Further, we determined the regulatory mechanism of rhizobium inoculation to alleviate Cu-stress in alfalfa through plant-soil system. The results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition in alfalfa by increasing the chlorophyll content, height, and biomass, in addition to nitrogen and phosphorus contents. Furthermore, rhizobium application alleviated Cu-induced phytotoxicity by increasing the antioxidant enzyme activities and soluble protein content in tissues, and inhibiting the lipid peroxidation levels (i.e., malondialdehyde content). In addition, rhizobium inoculation improved soil nutrient cycling, which increased soil enzyme activities (i.e., ß-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass, plant antioxidant enzymes, and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiotic system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-contaminated soils.

17.
Microorganisms ; 8(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114487

RESUMO

The property differences between bacteria produced from solid-state and liquid-state fermentations have always been the focus of attention. This study analyzed the stress tolerance and transcriptomic differences of the probiotic Lacticaseibacillus casei Zhang produced from solid-state and liquid-state fermentations under no direct stress. The total biomass of L. casei Zhang generated from liquid-state fermentation with MRS medium (LSF-MRS) was 2.24 times as much as that from solid-state fermentation with soybean meal-wheat bran (SSF-SW) medium. Interestingly, NaCl, H2O2, and ethanol stress tolerances and the survival rate after L. casei Zhang agent preparation from SSF-SW fermentation were significantly higher than those from LSF-MRS fermentation. The global transcriptomic analysis revealed that in L. casei Zhang produced from SSF-SW fermentation, carbohydrate transport, gluconeogenesis, inositol phosphate metabolism were promoted, that pentose phosphate pathway was up-regulated to produce more NADPH, that citrate transport and fermentation was extremely significantly promoted to produce pyruvate and ATP, and that pyruvate metabolism was widely up-regulated to form lactate, acetate, ethanol, and succinate from pyruvate and acetyl-CoA, whereas glycolysis was suppressed, and fatty acid biosynthesis was suppressed. Moreover, in response to adverse stresses, some genes encoding aquaporins (GlpF), superoxide dismutase (SOD), nitroreductase, iron homeostasis-related proteins, trehalose operon repressor TreR, alcohol dehydrogenase (ADH), and TetR/AcrR family transcriptional regulators were up-regulated in L. casei Zhang produced from SSF-SW fermentation. Our findings provide novel insight into the differences in growth performance, carbon and lipid metabolisms, and stress tolerance between L. casei Zhang from solid-state and liquid-state fermentations.

18.
Carbohydr Polym ; 236: 116059, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172874

RESUMO

A low-molecular-weight chitosan (LMWC) sample was prepared by enzymatic hydrolysis, and used for investigation of special Maillard reaction products (MRPs) and factors affecting LMWC bioactivities. After undergoing MR, LMWC turned to brown color (termed BLMWC), showed reduction of several indices of rice growth promotion. This alteration of bioactivities was attributable to MRPs in BLMWC. A special MRP, 5-hydroxy-2-pyridine methanol isomer (5-H-2PMIS), was identified by HPLC and LC-MS. Analysis of key factors affecting MR, using this MRP as monitoring target compound and OD420 value, suggested that MR process can be minimized by storing LMWC under vacuum in a dry, low-temperature, neutral-pH environment. Na2SO3 was effective for inhibition of MR, at optimal concentration 0.5 %. Chemical and FTIR analyses showed that Na2SO3-treated sample conformed to the Chinese National Standard of chitosan (GB 29941-2013). Control of MR is essential for application of LMWC in food, pharmaceutical, and other industries.


Assuntos
Quitosana/química , Produtos Finais de Glicação Avançada/química , Quitosana/farmacologia , Produtos Finais de Glicação Avançada/farmacologia , Glicosídeo Hidrolases/química , Reação de Maillard/efeitos dos fármacos , Peso Molecular , Oryza/efeitos dos fármacos , Pichia/enzimologia , Sulfitos/química
19.
FASEB J ; 34(1): 1065-1078, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914668

RESUMO

The hypoglycemic effect of Phellinus linteus polysaccharide extract (PLPE) has been documented in several previous studies, but the functional interactions among PLPE, gut microbiota, and the hypoglycemic effect remain unclear. We examined the regulatory effect of PLPE on gut microbiota, and the molecular mechanism underlying improvement of insulin resistance, using a type 2 diabetic rat model. Here, 24 male Sprague-Dawley rats were randomly divided into four groups that were subjected to intervention of saline (normal and model control group), metformin (120 mg/kg.bw), and PLPE (600 mg/kg.bw) by oral administration. After 8 weeks of treatment, PLPE increased levels of short-chain fatty acids (SCFAs) by enhancing abundance of SCFA-producing bacteria. SCFAs maintained intestinal barrier function and reduced lipopolysaccharides content in blood, thereby helping to reduce systemic inflammation and reverse insulin resistance. Our findings suggest that PLPE (in which polysaccharides are the major component) has potential application as a prebiotic for regulating gut microbiota composition in diabetic patients.


Assuntos
Regulação da Expressão Gênica , Resistência à Insulina , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Proteínas de Transporte/metabolismo , Ácidos Graxos Voláteis/sangue , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/sangue , Masculino , Phellinus , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Biol Macromol ; 130: 745-754, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844451

RESUMO

A crude polysaccharide fraction (termed cLEP) and two derived fractions (termed LEP1 and LEP2) from Lentinus edodes mycelia were purified and characterized. LEP1/-2 were classified as α-type heteropolysaccharides with 1 → 2, 1 → 3, 1 → 4, 1 → 6 linkages. Their monosaccharide components were respectively Gal, Glc, Man, Ara, Fuc, and Rha (molar ratio 10.17:9.75:9.01:1.61:1.26:1), and Glc, Man, Fuc, Rha, and Gal (molar ratio 5.18:4.69:2.85:1.43:1). In vitro culture experiments with macrophage RAW264.7 cells showed no cytotoxic effects of the polysaccharides. Phagocytosis (neutral red uptake) was significantly enhanced by LEP1/-2. Levels of NO, TNF-α and IL-6 were higher in LEP1/-2-treated groups than in cLEP-treated group. qRT-PCR analysis showed that LEP1/-2 had greater enhancing effect on mRNA transcription of iNOS, TNF-α, and IL-6 genes. Western blotting analysis revealed that LEP1/-2 strongly promoted phosphorylation of kinases ERK and JNK, and suggested that they exert immunoenhancing effects via MAPK signaling pathway.


Assuntos
Imunomodulação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Micélio/química , Polissacarídeos/farmacologia , Cogumelos Shiitake/química , Animais , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Monossacarídeos , Fagocitose , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...